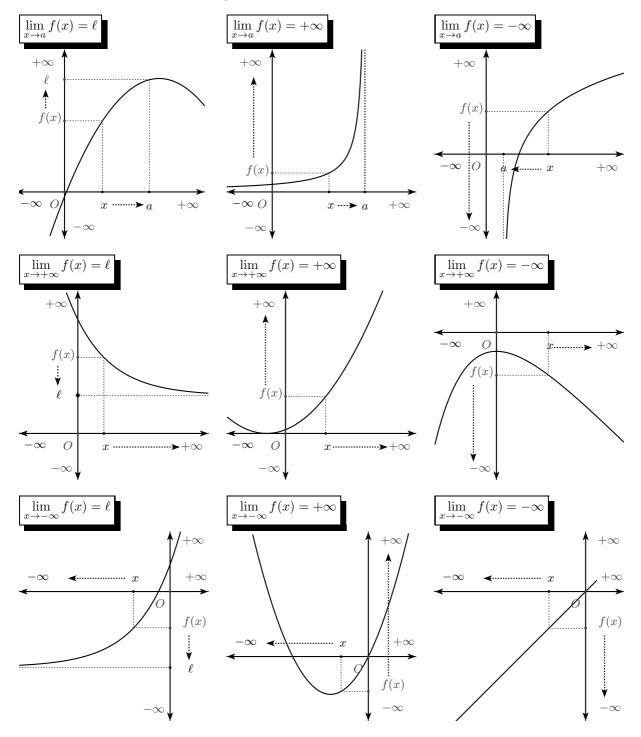
1. NOTION DE LIMITE : LES DIFFÉRENTES SITUATIONS.

Dans ces illustrations, a et ℓ désignent des réels fixés.



La notation $\lim_{x\to a} f(x) = \ell$ se lit : la limite de f(x) lorsque x tend vers a est ℓ . Les symboles ℓ et a peuvent être des nombres réels ou moins l'infini $(-\infty)$ ou plus l'infini $(+\infty)$.

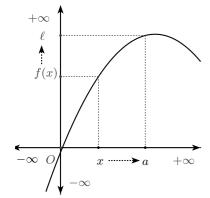
2. Limite lorsque x tend vers $a \in \mathbb{R}$

Cas d'une limite finie $\ell \in \mathbb{R}$

On dit que la limite de f(x), lorsque x tend vers a, est $\ell \in \mathbb{R}$ si le nombre f(x) peut être rendu aussi proche que l'on veut du réel ℓ , pourvu que x soit assez proche du réel a. Précisement

 $\lim_{x\to a} f(x) = \ell \in \mathbb{R} \iff$ Pour tout intervalle ouvert J contenant ℓ , il existe un intervalle I ouvert contenant a tel que l'intervalle J contient toutes les valeurs f(x) prises par toutes les nombres x de l'intervalle I.

 $\underline{\mathrm{Ou}}: \lim_{x \to a} f(x) = \ell \Longleftrightarrow \forall \varepsilon > 0, \ \exists \delta > 0 \ | \ x \in]a - \delta, a + \delta [\Longrightarrow f(x) \in]\ell - \varepsilon, \ell + \varepsilon [.$



Remarque. La fonction f est continue sur \mathcal{D} si pour tout $a \in \mathcal{D}$, $\lim_{x \to a} f(x) = f(a)$.

On verra que toutes les fonctions usuelles sont continues. Pour de telles fonction le calcul d'une limite en un point de l'ensemble de définition est un calcul d'image.

 $\underline{\text{Application}} : \lim_{x \to 1} \frac{x+1}{x-2} =$

Cas où la limite est $+\infty$ ou $-\infty$

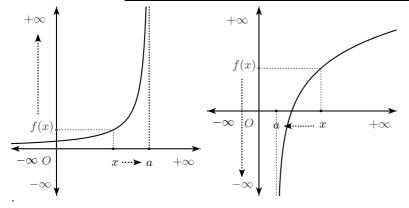
On dit que la limite de f(x), lorsque x tend vers a, est $+\infty$ si le nombre f(x) peut être rendu aussi grand que l'on veut, pourvu que x soit assez proche du réel a. Précisément :

 $\lim_{x\to a} f(x) = +\infty \iff$ Pour tout intervalle ouvert $]M, +\infty[$, il existe un intervalle ouvert I de la forme $]a, a+\alpha[$ ou $]a-\alpha, a[$ tel que l'intervalle $]M, +\infty[$ contient toutes les valeurs f(x) prises par toutes les nombres x de l'intervalle I.

Remarque. On définit de manière analogue $\lim_{x\to a} f(x) = -\infty$

 $\text{Limite à gauche: } \lim_{x \to a^{-}} f(x) = +\infty \Longleftrightarrow \forall M > 0, \ \exists \delta > 0 \ | \ x \in]a - \delta, a[\Longrightarrow f(x) \in]M, +\infty[.]$

Limite à droite : $\lim_{x \to a^+} f(x) = +\infty \iff \forall M > 0, \ \exists \delta > 0 \ | \ x \in]a, a + \delta [\implies f(x) \in]M, +\infty [$



Interprétation géométrique. Si $\lim_{x\to a} f(x) = +\infty$ ou $-\infty$, on dit que la courbe représentative de f admet la droite d'équation x = a comme asymptote verticale.

Application : Justifier à l'aide de la définition que $\lim_{x \to -1^+} \frac{1}{x+1} = +\infty$

3. Limite lorsque x tend vers $+\infty$ ou $-\infty$.

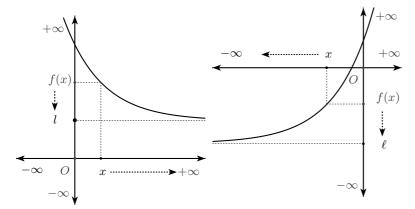
Cas d'une limite finie $\ell \in \mathbb{R}$

On dit que la limite de f(x), lorsque x tend vers $+\infty$ (plus l'infini), est $\ell \in \mathbb{R}$ si le nombre f(x) peut être rendu aussi proche que l'on veut du réel ℓ , pourvu que x soit assez grand. Précisement

 $\lim_{x\to +\infty} f(x) = \ell \in \mathbb{R} \iff \text{Pour tout intervalle } J \text{ ouvert contenant } \ell, \text{ il existe un intervalle ouvert } I \text{ de la forme }]A, +\infty[\text{ tel que l'intervalle } J \text{ contient toutes les valeurs } f(x) \text{ prises par toutes les nombres } x \text{ de l'intervalle } I.$

$$\underline{\mathrm{Ou}}: \lim_{x\to +\infty} f(x) = \ell \Longleftrightarrow \forall \varepsilon > 0, \ \exists A > 0 \ | \ x \in]A, +\infty[\Longrightarrow f(x) \in]\ell - \varepsilon, \ell + \varepsilon[.$$

Remarque. On définit de même $\lim_{x\to-\infty}$ en remplaçant $]A,+\infty[$ par $]-\infty,-A[$.



Interprétation géométrique.

Lorsque $\lim_{x\to +\infty} f(x) = \ell \in \mathbb{R}$, on dit que la courbe représentative de f admet la droite d'équation $y=\ell$ comme asymptote horizontale en $+\infty$.

On définit de façon analogue l'asymptote horizontale en $-\infty$.

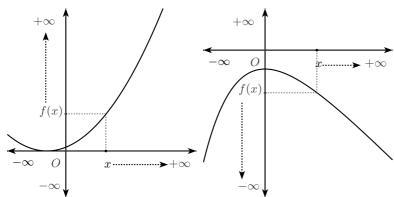
Application : Justifier à l'aide de la définition que la droite d'équation y=0 est une asymptote horizontale en $+\infty$ à la courbe représentative de la fonction f définie sur $]0,+\infty[$ par $f(x)=\frac{1}{\sqrt{x}}$.

Cas d'une limite infinie

On dit que la limite de f(x), lorsque x tend vers $+\infty$ (plus l'infini), est $+\infty$ si le nombre f(x) peut être grand que l'on veut, pourvu que x soit assez grand. Précisement

 $\lim_{x\to +\infty} f(x) = +\infty \in \mathbb{R} \iff \text{pour tout intervalle ouvert } I \text{ de la forme }]A, +\infty[, \text{ il existe un intervalle ouvert } I \text{ de la forme }]B, +\infty[\text{ tel que l'intervalle }]A, +\infty[\text{ contient toutes les valeurs } f(x) \text{ prises par toutes les nombres } x \text{ de l'intervalle } I.$

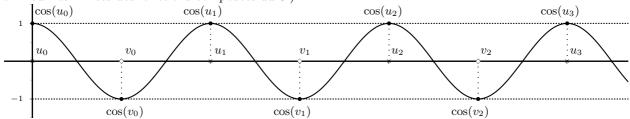
$$\underline{\mathrm{Ou}}: \lim_{x \to +\infty} f(x) = +\infty \Longleftrightarrow \forall A > 0, \ \exists B > 0 \ \mid \ x \in]B, +\infty [\Longrightarrow f(x) \in]A, +\infty [.$$



Exemple. Déterminer les limites suivantes puis les interpréter géométriquement : $\lim_{x \to -\infty} x^3$ $\lim_{x \to +\infty} 3 + \frac{4}{x}$

4. Absence de limite

Pour prouver qu'une fonction f n'admet pas de limite en $a \in \mathbb{R} \cup \{+\infty, -\infty\}$, il suffit de trouver deux suites (u_n) et (v_n) qui tendent vers a lorsque n tend vers $+\infty$ mais telles que $\lim_{n\to+\infty} f(u_n) \neq \lim_{n\to+\infty} f(v_n)$. (contraposée du thm sur les limites des fonctions composées du 6.)



Exemple. $\cos(x)$ n'a pas de limite lorsque x tend vers $+\infty$. En effet : soient (u_n) et (v_n) définies par $u_n = 2\pi n$ et $v_n = \pi + 2\pi n$. On a : $\lim_{n \to +\infty} \cos(2\pi n) = 1 \neq -1 = \lim_{n \to +\infty} \cos(\pi + 2\pi n)$.

5. Opérations sur les limites

Les théorèmes sur la limite d'une somme, d'un produit, d'un quotient de deux suites sont encore valables dans le cas de calculs de limites de fonctions.

Somme de limites

$\lim_{x \to a} u(x)$	$\ell \in \mathbb{R}$	$\ell \in \mathbb{R}$	$\ell \in \mathbb{R}$	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to a} u(x)$	$\ell' \in \mathbb{R}$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to a} u(x) + v(x)$	$\ell + \ell'$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	♠ ? ♠

Produit de limites

$\lim u(x)$	$\ell \in \mathbb{R}$	$\ell > 0$	$\ell < 0$	$\ell > 0$	$\ell < 0$	$+\infty$	$+\infty$	$-\infty$	0
$x \rightarrow a$, ,	., .		., .			1 * *		ď
$\lim_{x \to \infty} v(x)$	$\ell' \in \mathbb{R}$	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$
$x \rightarrow a$	0 × 0'	1.00	20	20	1.00	1.00	20	1.20	Λ 2 Λ
$\lim_{x \to a} u(x) \times v(x)$	$\ell \times \ell$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$	\triangle ? \triangle

Quotient de limites

$\lim_{x \to a} v(x)$	$\ell \neq 0$	$\pm \infty$	$0^+ (0, v(x) > 0)$	$0^- (0, v(x) < 0)$
$\lim_{x \to a} \frac{1}{v(x)}$	$\frac{1}{\ell}$	0	$+\infty$	$-\infty$

Remarque. Lorsque la forme indeterminée, $\left(\infty - \infty; \infty \times 0; \frac{0}{0}; \frac{\infty}{\infty}\right)$ il faut **changer** l'écriture de la fonction pour lever l'indetermination.

Remarque. Pour traiter les limites de quotients $\frac{u}{v}$ on remarque $\frac{u}{v} = u \times \frac{1}{v}$.

 $\underline{\wedge}$ dans le cas de $\frac{1}{v(x)}$, si la limite de v(x) est nulle, il faut étudier le signe de v(x) pour conclure.

 $\underline{\wedge}$ On n'écrit jamais de calcul faisant intervenir $+\infty,\,-\infty,\,0^+,\,0^-,\!\dots$

Exemple. •
$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} =$$
 $\operatorname{car} \lim_{x \to +\infty} \sqrt{x} =$

• La limite $\lim_{x\to 2, x<2} \frac{1}{2-x}$ dépend du signe de 2-x car $\lim_{x\to 2} 2-x=0$.

Or
$$\frac{x - \infty}{2 - x} + \frac{2}{+ 0} - \frac{+\infty}{-}$$
 donc si $x < 2$, on a $2 - x > 0$, d'où $\lim_{x \to 2, x < 2} \frac{1}{2 - x} = +\infty$.

6. Limite d'une fonction composée

Limite de la composée de deux fonctions

Soient u et v deux fonctions et $a, b, \ell \in \mathbb{R} \cup \{+\infty, -\infty\}$.

Si $\lim_{x \to a} u(x) = b$ et $\lim_{X \to b} v(X) = \ell$ alors $\lim_{x \to a} v(u(x)) = \ell$.

Exemple. Etudier les limites suivantes :

$$\lim_{x \to -\infty} \sqrt{x^2 + x + 1} = \lim_{x \to +\infty} \cos\left(\frac{1}{x^2 + 1}\right) =$$

Limite de la composée d'une fonction et d'une suite

Soient u une fonction définie sur un intervalle I et v une suite dont tous les termes v_n appartiennent à I. Soient $b, c \in \mathbb{R} \cup \{+\infty, -\infty\}$.

Si $\lim_{n \to +\infty} v_n = b$ et $\lim_{x \to b} f(x) = c$ alors $\lim_{n \to +\infty} f(v_n) = c$.

Exemple. Déterminons la limites suivante : $\lim_{n \to +\infty} \sqrt{\frac{4n-6}{2n+5}}$

$$\lim_{n\to +\infty}\frac{4n-6}{2n+5}=\frac{4}{2}=2\text{ et }\lim_{X\to 2}\sqrt{X}=\sqrt{2}\text{ donc }\lim_{n\to +\infty}\sqrt{\frac{4n-6}{2n+5}}=\sqrt{2}$$

Remarque. Si la suite (u_n) est définie par $v_n = f(n)$, et que $\lim_{x \to +\infty} f(x)$ existe, alors $\lim_{n \to +\infty} v_n = \lim_{x \to +\infty} f(x)$. La réciproque est fausse! (v_n) peut admettre une limite alors que f n'en admet pas.

Exemple. On considère la fonction f définie par $f(x) = \sin{(2\pi x)}$ et la suite v définie par $v_n = f(n)$. La fonction f n'admet pas de limite en $+\infty$. Mais $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} \sin{(2\pi n)} = 0$.

7. Traiter les formes indéterminées

A avant d'utiliser l'une des techniques suivantes, s'assurer d'avoir **simplifié** l'expression.

Exemple.
$$\lim_{x \to -2} \frac{x^2 - 4}{x + 2} =$$

Formes indéterminées avec des polynômes

D'une manière générale, factoriser dans l'expression, ou au numérateur et au dénominateur, le terme qui semble devoir dominer :

Exemple.
$$\lim_{x \to +\infty} x^6 - x^4 + x^3 + 1 = \lim_{x \to +\infty} 10\sqrt{x} - x + 2 =$$

Théorème. La limite d'un polynôme en $+\infty$ ou $-\infty$ est la même que la limite de son terme de plus haut degré. De même, la limite du quotient de deux polynômes en $+\infty$ ou $-\infty$ est la même que celle du quotient de leurs termes de plus haut degré.

Preuve. Dans le cas d'un polynôme en $+\infty$: soit $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ un polynôme avec $a_n \neq 0$. Alors pour tout $x \neq 0$, on a :

$$P(x) = a_n x^n \times \left(1 + \frac{a_{n-1}}{a_n} \frac{1}{x} + \dots + \frac{a_1}{a_n} \frac{1}{x^{n-1}} + \frac{a_0}{a_n} \frac{1}{x^n}\right). \text{ Or } \lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x^2} = \dots = \lim_{x \to +\infty} \frac{1}{x^n} = 0 \text{ donc la}$$

limite du facteur entre paranthèses est 1.

Par produit on a bien :
$$\lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} a_n x^n$$
. \square

Exemple.
$$\lim_{x \to +\infty} -2x^3 + 3x^4 - 5x + 4 =$$

Exemple.
$$\lim_{x \to -\infty} \frac{3-x}{2x+1} = \lim_{x \to -\infty} \frac{-x}{2x} = \lim_{x \to -\infty} \frac{-1}{2} = -\frac{1}{2}$$
 par théorème.

Exemple.
$$\lim_{x\to +\infty} \frac{-x+1}{x^2+x+1} =$$

 \wedge Le théorème du plus haut degré ne s'applique que pour les limites en $+\infty$ ou $-\infty$.

 \wedge L'utilisation du théorème pour les quotients de deux polynômes se fait en trois temps :

1. Application du théorème 2. Simplification 3. Conclusion.

Forme indéterminée $\frac{0}{0}$ et changement de variable

Pour les limites en $a \in \mathbb{R}$ (ou a^+, a^-) qui présentent une forme indéterminée du type $\frac{0}{0}$, il peut être opportun de faire un changement de variable en posant x = a + h.

Exemple.
$$\lim_{x\to 1} \frac{x^3 + x - 2}{1 - x} =$$

Forme indéterminée et radicaux : quantité conjuguée

Pour les limites faisant intervenir des radicaux, on peut essayer de multiplier au numérateur et au dénominateur par la quantité conjugée avec comme idée d'utiliser l'identité remarquable $a^2 - b^2 = (a - b)(a + b)$:

Exemple.
$$\lim_{x\to 1^+} \frac{x-1}{\sqrt{x+3}-2} = \lim_{x\to +\infty} \frac{1}{\sqrt{x+1}-\sqrt{x}} =$$

8. Théorèmes d'encadrement

Théorème de majoration et de minoration

Soient u et f deux fonctions définies sur un intervalle de la forme $[a, +\infty[$.

- si $\lim_{x \to +\infty} u(x) = +\infty$ et pour tout $x \in [a, +\infty[, f(x) \geqslant u(x), alors \lim_{x \to +\infty} f(x) = +\infty]$
- si $\lim_{x \to +\infty} u(x) = -\infty$ et pour tout $x \in [a, +\infty[, f(x) \le u(x), alors \lim_{x \to +\infty} f(x) = -\infty]$

Preuve. On prouve le premier point (la démo du second est analogue, laissée en exercice).

Par définition, $\lim_{x\to +\infty} u(x) = +\infty$ signifie que pour tout A>0, il existe B>a tel que pour tout $x\in [B,+\infty[$, on ait $u(x)\in [A,+\infty[$.

Or pour tout $x \in [a, +\infty[$, $f(x) \ge u(x)$ donc en particulier, pour tout x > B, on a l'inégalité $f(x) \ge u(x) \ge A$, donc $f(x) \ge A$. On a prouvé :

Pour tout A > 0, il existe B > 0 tel que pour tout $x \in [B, +\infty[$, on ait $f(x) \in [A, +\infty[$, c'est-à-dire $\lim_{x \to +\infty} f(x) = +\infty$. \square .

Exemple. $\lim_{x \to +\infty} x(\cos(x) - 2) =$

Théorème « des gendarmes »

Soient u, v, et f trois fonctions définies sur un intervalle de la forme $[a, +\infty[$.

Si $\lim_{x \to +\infty} u(x) = \lim_{x \to +\infty} v(x) = \ell \in \mathbb{R}$ et pour tout $x \in [a, +\infty[$, on a $u(x) \leqslant f(x) \leqslant v(x)$, alors

$$\lim_{x \to +\infty} f(x) = \ell$$

Remarque. il existe des théorèmes analogues lorsque x tend vers $-\infty$, vers a, a^+ ou a^- .

⚠ Les inégalités strictes ne passent pas aux limites.

En effet, $\frac{1}{x} > 0$ mais l'inégalité $\lim_{x \to +\infty} \frac{1}{x} > 0$ est fausse.

Exemple. Calculer $\lim_{x \to +\infty} x + \cos(x)$ et $\lim_{x \to 0} x \sin \frac{1}{x}$.

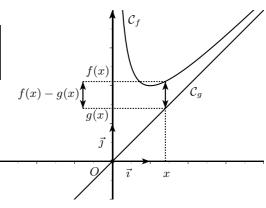
9. Courbe asymptote

Différence de deux courbes

Soient f et g définies sur un intervalle I et C_f et C_g leurs courbes représentatives dans un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$.

Pour tout $x \in I$, le nombre f(x) - g(x) représente, au signe près, l'écart entre le point de \mathcal{C}_f d'abscisse x et le point de \mathcal{C}_g d'abscisse x.

Méthode. Ainsi, pour rechercher les points d'intersection de deux courbes, on résout l'équation f(x) - g(x) = 0. L'ensemble des solutions est l'ensemble des abscisses des points appartenant aux deux courbes. On détermine leurs ordonnées en utilisant indifféremment y = f(x) ou y = g(x).



Méthode. De même, pour déterminer la position relative de deux courbes, on étudie le signe de f(x) - g(x) en fonction des valeurs de x, et on l'interprère ainsi :

- sur les intervalles où f(x) g(x) > 0, C_f est au dessus de C_g .
- sur les intervalles où f(x) g(x) < 0, C_f est en dessous de C_g .

Asymptote oblique

On dit que la courbe représentative d'une fonction f admet la droite d'équation y=ax+b comme asymptote oblique en $+\infty$ si l'écart entre la courbe et la droite tend vers 0 lorsque x tend vers $+\infty$:

$$\lim_{x \to +\infty} f(x) - (ax + b) = 0$$

Exemple. Soit
$$f:]0, +\infty[\to \mathbb{R}, \ x \mapsto \frac{3x^2 + 2x + 1}{x}.$$

Montrer que la droite d'équation y = 3x + 2 est asymptote oblique à la courbe représentative de f en $+\infty$.

Exemple. Soit f la fonction définie pour $x \neq 1$ par $f(x) = \frac{x^2 + 2x + 2}{x - 1}$.

- 1. Calculer f(x) (x+3).
- 2. En déduire que la courbe représentative de f admet une asymptote oblique D en $-\infty$ et en $+\infty$.

Application: Soit f la fonction définie pour $x \neq -2$ par $f(x) = \frac{x^2 - x - 5}{x + 2}$.

- 1. Déterminer a, b et c tel que $f(x) = ax + b + \frac{c}{x+2}$.
- 2. Montrer que la courbe représentative de f admet une asymptote verticale D et une asymptote oblique Δ .
- 3. Déterminer la position relative des courbes C_f et Δ .

On définit de même l'asymptote oblique en $-\infty$, et la notion de courbe asymptote :

Exemple. Soit $f:]0, +\infty[\to \mathbb{R}, \ x \mapsto x^2 + \frac{1}{x}]$. Montrer que la parabole d'équation $y = x^2$ est asymptote à la courbe représentative de f en $+\infty$.